

Pumps And Motors Efficiency

WELCOME!
Session starts at 10:00 a.m.

WELCOME!

This training is presented by RCAC with funding provided by the California State Water Resources Control Board Division of Drinking Water (DDW)

Your Moderators Today...

Mike BoydGering NE

John Hamner Kelseyville CA

The Rural Community Assistance Partnership

RCAC Programs

- Affordable housing
- Community facilities
- Water and wastewater infrastructure financing (Loan Fund)
- Classroom and online training
- On-site technical assistance
- Median Household Income (MHI) surveys

Performance Assessment Rating Tool (PART)

- 4 to 6 weeks from today
- Email w/ today's workshop in subject line
- 2 questions 3 minutes maximum
- How did you use the information that was presented today?
- Funders are looking for positive changes
- Help us continue these free workshops!

Hide/Restore Control Panel

Marking Tool

Control Tabs

Audio _ Controls

Attendee List

Today's Materials

Questions?

Text your questions and comments anytime during the session

Your Presenter Today...

Neil Worthen Las Cruces, NM

nworthen@rcac.org

Pumps And Motors Efficiency

RCAC 2015 Online Workshops

Poll Time!

Question 1: Who's here today?

Poll Time!

Question 2: If you answered "other"....

What Is...

A Motor?

A Pump?

Let's Start With Motors...

 A device that converts electrical energy into mechanical energy, typically by inducing rotation within a magnetic field

How About a Pump?

A device that converts mechanical energy into fluid energy, generally by suction or compression, to move water, air or other fluids

GROUP QUESTION... (Raise your hand or text message)

Based on the previous two slides, what is happening when a motor is driving the movement of water?

ANSWER:

Electrical energy is converted to fluid energy!

Why Aren't Motors Very Good At What They Do?

- Energy is converted to motion by the proximity of a magnetic field (induction)
- ◆ Not all the energy is converted
 - Heat
 - Friction
 - Resistance

Why Aren't Pumps Very Good At What They Do?

- Not all rotational energy is converted to fluid power
- Some energy is lost to friction, wear, inefficiency

Basic Realities #1

 Motor output power will always be less than input power

Basic Realities #2

 Fluid power will always be less than motor output power

What Does This Mean?

 Ratio between input power and liquid power is called "Wire-To-Water" (WTW) efficiency

More Unpleasant Realities...

- Typical motor efficiency range –
 77% @ 1 HP to 96% @ 500 HP
- Typical centrifugal pump efficiency range –
 50% to 85%

Overall Wire-To-Water Efficiency in This Example = .69 OR 69%

Why Should We Be Concerned?

- Power is consumed overcoming the inefficiency of pumps and motors
- ◆ You will pay lots of for that power
- Choose your pumps and motors carefully!

What Is Total Dynamic Head (TDH)?

- ANSWER: The sum of all the resistance in a fluid pumping system during operation
 - Suction lift
 - Discharge lift
 - Friction losses

Hide/Restore Control Panel

Marking Tool

Pop Quiz!

Let's Talk About Friction...

Pipecondition

Pipematerial

PipeDiameter

Pipelength

Flow (velocity)

Number & type of fittings

Questions?

Text your questions and comments anytime during the session

Sample TDH Problem

Total lift	380 feet
Type of pipe	PVC
Condition of pipe	New
Diameter of pipe	6"
Length of pipe	820 feet
Number & type of fittings:	
(1) swing check valve	
(4) 90° elbows	

HazenWilliams Pipe Fitting Friction Loss Nomograph

40 feet of straight pipe

17 feet of straight pipe

What's The Real Length?

Original length -

820 ft

4 elbows @ 17 ft ea. -

1 swing check @ 40' -

Total -

What's The Real Length?

Original length - 820 ft

4 elbows @ 17 ft ea. 68 ft

1 swing check @ 40' _____40 ft

"Real" pipe length - 928 ft

Why Is This Important?

 During design, we can avoid using fittings and materials with high friction losses

◆Bottom line – SAVING \$\$\$\$\$\$\$!

Pop Quiz!

Web Tour - TDH Calculator

Flow Rate		GPM	~	
Pipe Diameter		inch 🗸		Inside diameter
Pipe Length		ft 🗸		Total length
Differential Elevation		ft 🗸		From water drawdown level to highest point in the pipe set up. Water drawdown level is defined as the water level when the pump is turned on.
Pipe Material	Cast-Iron		~	
Pressure Tank (Check for Yes)	0	PSI V		
Total Dynamic Head TDH:	0 ft 🗸			

What's The Lesson?

- ◆TDH increases...
 - With flow
 - With pipe roughness
 - With pipe length
 - When pipe size decreases
 - When flow changes direction

Motor Terminology

Poll Time!

Question 3: What is the highest horsepower motor in your water system?

Common AC Motor Types

- Induction
- Synchronous

Induction Motors

- Power is applied only to the stator
- Rotational motion is induced to the rotor by means of a rotating magnetic field
- Less efficient than synchronous motors

Synchronous Motors

 Power is applied to both rotor and stator

 Slip rings used to energize rotor windings

 More efficient than induction motors

Brushes

Induction Motors

- Self-starting
- Widely used
- Widely available
- ◆ Durable
- Inexpensive
- High power-to-weight ratio

Motor Terminology... NEMA Frame Types

- ◆ TEFC (Totally Enclosed Fan Cooled)
- TENV (Totally Enclosed Non-Ventilated)
- ◆ TEAO (Totally Enclosed Air Over)
- TEXP (Totally Enclosed Explosion-Proof)
- ODP (Open Drip-Proof)
- ◆ C-Face

Understanding Motor Nameplates

ULTRA POWER SERIES

AB)		MODEL NO. TB00 VOLTS208-230/460	14DFA AMP 38-36/18	CONNECTIONS
ØID			FRAME NO. 143T	7 8 9 9
		MAX.AMB. 40 °C	SERVICE FACTOR 1.15	1 ‡ 2 ‡ 3 ‡
HP	1	TIME RATING CONT.	BRG. D.E. 6205ZZ	LOW/VOLTS
RPM	1720	KVA CODE K	NO. O.D.E. 6205ZZ	4 1 5 1 6 1 7 1 8 3 9
INS.	В	NEMA F.L. EFF. 77	NEMA DESIGN B	1 2 2 2 3 2
HZ	60	DATE CODE 0396	SER# 001687411	HIGH VOLTS

MADE IN TAIWAN R.O.C.

4-20706

Motor Efficiency Matters!

- In U.S. Industry, electric motors consume:
 - ▶ ~680 billion kWh/year
 - ▶ ~63% of all industrial electricity consumption

Factors Influencing Efficiency

- Age
- Capacity
- Speed
- ◆Type

- ◆ Temperature
- Rewinding
- ◆Load

Energy Efficient Motors

◆ 3-7% higher than standard motors

- Wide range of ratings
- More expensive but rapid payback
- Best to replace when existing motors fail

What's An Efficient Motor?

Same components; just more and better materials and closer tolerances.

- → Larger wire gauge Lower stator winding loss
- → Longer rotor and stator Lower core loss
- → Lower rotor bar resistance Lower rotor loss
- → Smaller fan Lower windage loss
- → Optimized air gap size Lower stray load loss
- → Better steel with thinner laminations -- Lower core loss
- →Optimum bearing seal/shield Lower friction loss

Poll Time!

Question 4: What is the oldest motor in your water system?

Motor Performance Affected By...

- Poor power quality: fluctuations in voltage and frequency
- Voltage unbalance: unequal voltages to three phases of motor

	Example 1	Example 2	Example 3
Voltage unbalance (%)	0.30	2.30	5.40
Unbalance in current (%)	0.4	17.7	40.0
Temperature increase (oC)	0	30	40

Rewinding

- Can reduce motor efficiency
- Maintain efficiency after rewinding by
 - Using qualified/certified firm
 - Maintain original motor design
 - Replace <40HP, 15+ year old motors instead of rewinding
 - If rewinding/rebuilding costs more than 30-40% of a new motor... buy a new motor!

Maintain Motor Efficiency

- Inspect motors regularly for wear, dirt/dust
- Checking motor loads for over/under loading
- Lubricate appropriately
- Check alignment of motor and equipment
- Ensure supply wiring and terminal box and properly sized and installed
- Provide adequate ventilation

Questions?

Text your questions and comments anytime during the session

http://www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/TMF.shtml

- Grants & Loans
- ->> Fees
- ->> Customer Service Survey
- ->> File an Environmental Complaint
- Employment
- ->> Frequently Asked Questions
- Useful Links
- Website Index

TMF F

TMF Assessment Information For All Water System Types

- ->> TMF Assessment Form (Word)
- TMF Capacity Criteria (Word)
- ->> TMF Staff Evaluation Form for Funding (Word)
- ->> Documentation Requirements for TMF Assessments (PDF)
- ->> TMF Staff Evaluation Form for New Water System or Change of Ownership (Word)
- Alternative TMF Assessment and Staff Evaluation (Word)
- Alternative TMF Assessment and Staff Evaluation (PDF)
- ->> TMF Capacity Assessment "E-Z" Form For Transient-Noncommunity Public Water Systems -Change of Ownership (Word)

Planning Assistance

- ->> Operations Plan
- ->> Typical Equipment Life Expectancy (PDF)
- ->> Emergency Disaster Response Plan (Word)
- ->> Consumer Confidence Reports
- Template for Public Notification

Budget Templates

- ->> 5-yr Budget Projection/Capital Improvement Plan (CIP) (Excel)
- Expense Only: 5-Yr Budget Projection/Capital Improvement Plan (CIP) (Excel)
- ->> 5-Yr Budget for Large Community (Excel)

Resources

- ->> Rural Community Assistance Corporation (RCAC)
- ->> California Rural Water Association (CRWA)
- Self-Help Enterprises (SHE)
- ->> California State University Sacramento, Office of Water Programs (CSUS)
- ->> American Water Works Association (AWWA), California-Nevada Section
- ->> Basic Small Water System Operations Book

Reports

- ->> Capacity Development Strategy ->> TMF Tune-Up (2000) (Word)
- ->> Capacity Development Report to Governor (2002) (PDF)
- ->> Capacity Development Report to USEPA (2004-2005) (PDF)
- ->> Capacity Development Report to USEPA (2005-2006) (PDF)
- ->> Capacity Development Report to USEPA (2006-2007) (PDF)
- ->> Annual Capacity Development Report to USEPA (2007-08)
- ->> Triennial Capacity Development Report to the Governor (2005-2008)
- ->> Annual Capacity Development Report to USEPA (2008-2009)
- ->> Annual Capacity Development Program Implementation Report to USEPA (2009-2010)
- Annual Capacity Development Program Implementation Report to USEPA (2011-2012)

Other Links

- ->> Safe Drinking Water State Revolving Fund
- ->> Check Up Program for Small Systems (CUPSS)

(Updated 9/3/14)

Thank You For Attending!

Neil Worthen nworthen@rcac.org (575) 527-5372

Thank You For Attending!

We look forward to seeing you in future online classes!

nworthen@rcac.org mboyd@rcac.org jhamner@rcac.org

