

## WELCOME!

This training is presented by RCAC with funding provided by the California State Water Resources Control Board Division of Drinking Water (DDW)

## The Rural Community Assistance Partnership



## RCAC Programs

- Affordable housing
- Community facilities
- Water and wastewater infrastructure financing (Loan Fund)
- Classroom and online training
-On-site technical assistance
- Median Household Income (MHI) surveys

Performance Assessment
Rating Tool (PART)

- 4 to 6 weeks from today
- Email w/ today's workshop in subject line
- 2 questions - 3 minutes maximum
- How did you use the information that was presented today?
- Funders are looking for positive changes
- Help us continue these free workshops!



## Audio Controls




## Questions?



Text your questions and comments anytime during the session

## Your Trainer Today



- John Hamner

Rural Development
Specialist -
Environmental
jhamner@rcac.org


## Water Math Topics Today

- Expected Range of Knowledge
- Basic conversions
- Volumes
- Chlorination \& chemical feed
- Detention time
- Filtration
- Velocity
- Misc


## State Water Resources Control Board

## Drinking Water Treatment Exams <br> Expected Range of Knowledge

| Exam Content | Number of questions |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Grade | T1 | T2 | T3 | T4 |
|  |  |  |  |  |
| Source Water | 25 | 25 | 20 | 15 |
|  |  |  |  |  |
| Water Treatment Processes | 25 | 25 | 35 | 20 |
| Operation/Maintenance |  |  |  |  |
| Laboratory Procedures | 20 | 20 | 15 | 15 |
|  | 15 | 15 | 15 | 15 |
| Regulations/Administrative Duties | 15 | 15 | 15 | 35 |

## Source Water

Watershed Protection, Wells / Groundwater, Surfoce Water / Reservoirs, Raw Water Storage, Clear Well Storage

## Water Treatment Processes

Coaguation/Hocculation/ Sedimentation, Filtration, Disinfection, Demineralization, CorrosionControl, Iron and Manganese removal, Fluoridation, Water Softening, BAT, (Best Available Tednnology)

## Operation / Maintenance

Chemical feeders, Pumps and Motors, Blowers and Compressors, Water meters, Pressure gauges, Electrical generators, Safety, SCADA systems

## Laboratory Procedures

Sampling, General Lab Prectices, Disinfectant anaysis, Alkalinity andlysis, pH analysis, Turbidity analysis, Specific conductance, Hardness, Fluoride analysis, Color analysis, Taste and Odor analysis, Dissolved Oxygen anaysis, Alcae Count, Bacteriological analysis

## Regulations/Administrative Duties

Planning, Organizing, Directing, Controlling, Staffing, Implementing Regulations, Record keeping, Safe Drinking Water Act and amendments, Surface Water Treatment Rule and amendments, Primary Contaminants, Secondary Contaminants; Lead and Copper Rule, Fluoride Regulations, Operator Certification Regulations

## EXPECTED RANGE OF KNOWLEDGE WATER TREATMENT EXAMS

(Items marked "T1-T4" may be on the T1 - T4 exams)<br>(Items marked "T2-T4" may be on the $\mathrm{T} 2-\mathrm{T} 4$ exams but not on the T 1 exam)<br>\section*{Source Water}<br>Wells/Groundwater<br>T1-T4 Knowledge of the characteristics of aquifers<br>T1-T4 Knowledge of the chemical components of groundwater<br>T1-T4 Knowledge of potential contamination in groundwater<br>T1-T4 Knowledge of well sampling techniques<br>T1-T4 Knowledge of groundwater characteristics<br>T1-T4 Ability to analyze water quality characteristics<br>T1-T4 Ability to calculate well drawdown<br>T2-T4 Ability to recognize hydrological changes<br>T2-T4 Ability to calculate a disinfectant dosage in a well<br>T2-T4 Ability to recognize the influence of surface water on a groundwater source<br>T2-T4 Ability to calculate well specific capacity<br>T3-T4 Knowledge of the source water assessment process<br>T3-T4 Ability to recognize abnormal chemical characteristics of water<br>T3-T4 Ability to calculate well head pressure

```
Water Treatment Exam Math
    T1-T4 Ability to calculate well drawdown
    T1-T4 Ability to calculate flow rates, water velocity
    T1-T4 Ability to calculate the volume of water contained in a storage facility
    T1-T4 Ability to calculate a chemical, disinfectant dosage
    T1-T4 Ability to determine water level
    T1-T4 Ability to calculate volumes, dilution factors, feed rates, and chemical
        concentrations
    T1-T4 Ability to calculate a de-chlorination dosage
    T1-T4 Ablity to calculate chlorine residual
    T1-T4 Ability to convert a head pressure to water elevation
    T2-T4 Ability to calculate well specific capacity
    T2-T4 Ability to calculate detention time
    T2-T4 Ability to calculate chemical solution concentration
    T2-T4 Ability to calculate fiter-aid dosage
    T2-T4 Ability to calculate filter backwash rate
    T2-T4 Ablity to calculate an ammonia/chlorine ratio
    T2-T4 Ability to calculate a chemical feed rate (dose) for corrosion control
    T2-T4 Ablity to calculate a chemical dosage for Fe/Mn removal, fluoridation
    T2-T4 Ability to calculate a dosage on a chemical feeder
```


## What are we actually doing?

## We are CONVERTING!

-Pay attention to the units of measure...

## Examples...

$24 \mathrm{hr} /$ day $\times 60 \mathrm{~min} / \mathrm{hr} \times 60 \mathrm{sec} / \mathrm{min}=\mathrm{sec} /$ day

MGD x $8.34 \mathrm{lbs} / \mathrm{gal} \times \mathrm{ppm}=\mathrm{lbs} /$ day
$50 \mathrm{ft} \times .433 \mathrm{psi} / \mathrm{ft}=\mathrm{psi}$

## Water Math - Terms, Definitions and Water Measurements

- Square feet = sq ft (ft2)
- Cubic feet = cu ft (ft3)
- Acre feet = ac ft
- Gallons per acre foot = gal/ac ft
- Inches per foot $=\mathrm{in} / \mathrm{ft}$
- Mile = mi
- Feet per mile $=\mathrm{ft} / \mathrm{mi}$


## Water Math - Terms, Definitions and Water Measurements

- Gallons per cubic ft = gal/cu ft
- Pounds per gallon = lbs/gal
- Pounds per square inch = psi
- Gallons per day = gpd
- Gallons per minute = gpm
-What about percentages?


## What would $75 \%$ be in the form of a decimal?

75
.75
7.5
75.0
.075
75.0

What would $5 \%$ be in the form of a decimal?

5
.05

|  |  | 5.0 |
| :--- | :--- | :--- |
| 5.00 | .005 |  |
|  |  | 005.0 |


| STATE OF CALIFORNLADEPARTMENT OF PLIBLIC HEALTHDRINENG WAJER OPERBATRR CERTIFICATION PROGRAM |  | PUMPING <br>  <br> Whe to Ware entoncy <br> - (M, \% Borcy x Pamp \%ewercy) <br> $\cos 5=$ <br>  |
| :---: | :---: | :---: |
| ```Units and Conversion Factors 1 Cublc foot or walar waigns 62.3832 in 1 gaisn of water welgns 8.34 io 1 ine of water weigns \(1,000 \mathrm{gm}\) \(1 \mathrm{mgh}-1\) part pes milion (ppm) 1\% - 10,000 ppm \(A^{2}\) - squary fert and \(n^{2}-\) cubk het \(1 \mathrm{mlle}-5,250\) tant (fi) \(1 \mathrm{yd}^{2}-27 \mathrm{f}^{1}\) and 1 yard -3 feet 1 are (a) \(-43,500\) square feet ( \(\mathrm{n}^{3}\) ) 1 зare foot \(=325.229\) gasions 1 cublc foot \(\left(\pi^{2}\right)-7.45\) gations (ga) \(1 \mathrm{gal}-3.785\) ITers (L) \(1 \mathrm{~L}=1.000 \mathrm{~m} \mathrm{mes}(\mathrm{m} /)\) 1 pound (ib) - 454 grams (gm) \(110=7,000\) grans (g) 1 graln per gation (gpg) \(=17.1 \mathrm{mg}\) 人 \(1 \mathrm{gm}-1,000 \mathrm{~mm}\) grams ( mg ) 1 day \(-24 x-1,440\) min \(-26,400 \leq 5\)``````- 1.55 ou feemMgD``` | VOLUME <br> Reatangula Bañ = <br> boumengi <br> (ength.fl $\times$ Math ther $x$ Heicht.fl $\times 7.48 \mathrm{gal}$ cuft <br> cyandar, vaune, gal = <br>  |  |
|  | SOLUTIONS <br>  |  |
| CHLOFINATION <br> Doerge, mgl $=($ Demand mg I) $)+($ Realdual, mg 月 $)$ | spantic Gay xast trgano x suturgas <br>  |  |
|  |  | Spernc capaty GPMT: - Wa var GaM |
|  |  |  |
|  | Two -Nornal Equations <br> द CMase ClV <br> b) $\mathrm{CO}+\mathrm{CO}_{2}-\mathrm{C}_{2} \mathrm{Cl}_{3}$ | SCADA = ${ }^{2} 4 \mathrm{~mA} 10.20 \mathrm{~mA}$ anamy bigna <br>  |
|  | $\mathrm{C}=$ Concentration, $\quad \mathrm{V}=$ Vaum |  |


| FILTRATION |  | C. T CALCLLATIONS |
| :---: | :---: | :---: |
|  | s¢fil $=$ squas | C-t =(Chlorine Reridual, mgI)x(Time, minutes) |
|  |  | $\text { Time, minutes }=\frac{c \cdot t}{(\text { ChlocineResidual.mg'L })}$ |
|  |  | $\text { Chlarine Residusl }(\mathrm{mg} / \mathrm{L})=\frac{\mathrm{C} \cdot \mathrm{t})}{\text { (Inpee minutes })}$ |
|  |  | $\text { Inactivation Ratio }=\frac{\text { Agtral Svatemc } \cdot 1 \text { ) }}{(\text { Thable } " E " C \cdot t)}$ |
|  |  | C-t Calculated $=\mathrm{T}_{\text {\% }}$ Value, minutas $\times$ Chlorine Residual, mg 1 |
|  |  | $\text { LogRemoval }=100 \frac{\% \text { Removal }}{100} \times \text { Lagkey } \times(-1)$ |
|  |  |  |
| SEDMENIATION | Chemical Dosage Calculations <br> Note (\% purity) and (\% commacial purity) usad in deciral fom |  |
|  | Lbs/day yas feed d |  |
| Detention Tizen= $\frac{\text { Volvme }}{\text { flaty }}$ | $\text { Lbs/day = }=\mathrm{MCD}$ |  |
| $\text { Detention Time hours }=\frac{\text { volume }(\mathrm{cu} \mathrm{ff}) \times 7.48 \mathrm{sal} / \mathrm{cu} \mathrm{ff} \times 24 \mathrm{hr} / \mathrm{dav}}{\text { Gal/ day }}$ | $G P D=\mathrm{MGD} \times$ |  |
| $\text { Flaw Rate }=\frac{\text { Volume }}{\text { Time }}$ | $\mathrm{GPD}=\frac{\mathrm{MGD}}{\text { (oommer }}$ | (ppmormerL) $88.341 \mathrm{bs}(3 \mathrm{ml}$ <br> purity $\%$ ) $x$ (jan purity $\%$ ) $x$ ( $\mathrm{Dos} / \mathrm{gal}$ ) |
|  | $\text { BRy or mgl }=\frac{\mathrm{lbs}}{3 \text { JGI }}$ |  |


| Units and Conversion Factors |  |
| :---: | :---: |
| 1 cubic foot of water weighs 62.3832 lb |  |
| 1 liter of water weighs 1.000 gm |  |
| $1 \mathrm{mg} / \mathrm{L}=1$ part per million (ppm) |  |
| 1\% = 10,000 ppm |  |
| $\mathrm{ft}^{2}=$ square feet and $\mathrm{ft}^{3}=$ cubic feet |  |
| 1 mile $=5,280$ feet (ft) State |  |
| $1 \mathrm{yd}^{3}=27 \mathrm{ft}^{3}$ and 1 yard $=3$ feet $\quad$ California |  |
| 1 acre (a) $=43,560$ square feet ( $\mathrm{t}^{2}$ ) |  |
| 1 acre foot $=325,829$ gallons $\quad$ Conve |  |
| 1 cubic foot ( $\mathrm{ft}^{3}$ ) $=7.48$ gallons (gal) |  |
| $1 \mathrm{gal}=3.785$ liters (L) |  |
| 1 pound (lb) $=454$ grams (gm) |  |
| $1 \mathrm{lb}=7,000$ grains (gr) |  |
| 1 grain per gallon (gpg) $=17.1 \mathrm{mg} / \mathrm{L}$ |  |
| $\begin{aligned} & 1 \mathrm{gm}=1,000 \text { milligrams }(\mathrm{mg}) \\ & 1 \text { day }=24 \mathrm{hr}=1,440 \mathrm{~min}=86,400 \mathrm{sec} \end{aligned}$ |  |
|  |  |
| 1,000,000 gal/day $\div 86,400 \mathrm{sec} /$ day $\div 748 \mathrm{gal} / \mathrm{cu}$ |  |

## CHLORINATION

Dosage, mg/l $=$ (Demand, mg/l) + (Residual, $\mathrm{mg} / \mathrm{l}$ )
(Gas) lbs $=($ Vol, $M G) \times($ Dosage, mgl$) \times(8.34 \mathrm{lbs} / \mathrm{gal})$
HTH Solid (lbs) =
(Vol, MG) $\times($ Dosage, $\mathrm{mg} / \mathrm{l}) \times(8.34 \mathrm{lbs} / \mathrm{gal})$
( \% Strength / 100 )
Liquid (gal) =
(Vol, MG) $\times($ Dosage, $\mathrm{mg} / \mathrm{l}) \times(8.34 \mathrm{lbs} / \mathrm{gal})$
( \% Strength /100) x Chemical Wt. (lbs/gal)

## PRESSURE

$$
\text { PSI }=\frac{(\text { Head, ft. })}{2.31 \mathrm{ft} . / \mathrm{psi}} \quad \text { PSI }=\text { Head, ft. } \times 0.433 \mathrm{PSI} / \mathrm{ft} .
$$

Ibs Force $=(0.785)(\mathrm{D}, \mathrm{ft}) .2 \times 144 \mathrm{in} 2 / \mathrm{ft} 2 \mathrm{PSI}$.

## VOLUME

Rectangular Basin =
Volume, gal
(Length, ft$) \times($ Width, ft$) \times($ Height, ft$) \times 7.48 \mathrm{gal} / \mathrm{cu} . \mathrm{ft}$.

Cylinder, Volume, gal =
(0.785) $\times$ (Dia, ft) $2 \times($ Height, Length, Depth, in ft.) $\times 7.48$ gal/ft 3

Time, Hrs. =
Volume, gallons
(Pumping Rate, GPM, x $60 \mathrm{Min} / \mathrm{Hr}$ )

Supply, Hrs.=
Storage Volume, Gals
( Flow In, GPM - Flow Out, GPM) x $60 \mathrm{~min} / \mathrm{hr}$.)

## SOLUTIONS

```
Us/Gal = (Solution%) 
```

Lbs Chemical =
Specific Gravity $\times 8.34$ llsg/gallons $\times$ Solution(gal)
Specific Gravity $=$ ChemicalWt (lbsiqal)
8.34 (lbsigal)
\% of Chemical $=$ (DryChemical, Lbs) $\times 100$
in Solution (DryMC Chemical, Lbs ) $+($ Water, Lbs$)$

(\% purity) $\times$ Chemical Wt (bs/gal)
GPD $=($ Feed ml/min $\times 1,440 \mathrm{~min} / \mathrm{day})$
(1000mL x 3.785 LGal)

Two-Nomal Equations:
a) $\mathrm{CV}=\mathrm{CV}_{2} \mathrm{~V}$ : $\frac{Q_{1}}{V_{1}}=\frac{Q_{2}}{V_{2}}$
b) $\mathrm{C}_{1} \mathrm{~V}_{1}+\mathrm{C}_{2} \mathrm{~V}_{2}=\mathrm{C}_{3} \mathrm{~V}_{3}$
$\mathrm{C}=$ Concentration, $\mathrm{V}=$ Volume,$\quad \mathrm{Q}=$ Flow

Flow, velocity, area
$Q=A \times V \quad$ Quantity $=$ Area $\times$ Velocity
Flow ( $\mathrm{ft}^{3} / \mathrm{sec}$ ) $=$ Area $\left(\mathrm{ft}^{2}\right) \times$ Velocity ( $\mathrm{ft} / \mathrm{sec}$ )

$$
\frac{\text { MGD } \times 1.55 \mathrm{cuft} / \mathrm{sec} / \mathrm{MGD}}{.785 \times \text { pipe diameterf } \times \text { pipe diameterft }}=\frac{\mathrm{cuf} / \mathrm{sec}}{\mathrm{sq} \mathrm{ft}}=\mathrm{ft} / \mathrm{sec}
$$

## General <br> (\$) Cost / day $=$ Lbs/day $\times(\$)$ Cost/lb

Removal, Percent $=($ In - Out $) \times 100$
In
Specific Capacity, GPM/ft. = Well Yield, GPM Drawdown, ft.

Gals/Day $=$ (Population) $\times$ (Gals/Capita/Day)
GPD $=($ Meter Read $2-$ Meter Read 1) (Number of Days)

Volume, Gals $=$ GPM $\times$ Time, minutes

## FILTRATION



## SEDIMENTATION

Surface Loading Rate, (GPD/sq. f.) $=$ (TotalFlow,GPD ) (Surface Area, sq.ft.)

Detention Time $=$ Volume flow

Detention Time hours = volume (cu ft) $\times 7.48 \mathrm{gal} / \mathrm{cuft} \times 24 \mathrm{hr} /$ day Gal/day

Flow Rate $=$ Volume
Time

Weir OverflowRate, GPD/L.F. $=$ (Flow, GPD)
( Weir length, ft .)

## Chemical Dosage Calculations

Note (\% purity) and (\% commercial purity) used in decimal form
Lbs/day gas feed dry $=$ MGD $\times(\mathrm{ppm}$ ormg/L) $\times 8.34 \mathrm{lbs} / \mathrm{gal}$
$\mathbf{L b s} / \mathbf{d a y}=\underline{\mathrm{MGD} \times(\mathrm{ppm} \text { or } \mathrm{mg} / \mathrm{L}) \times 8.34 \mathrm{lbs} / \mathrm{gal}}$
\% purity
$\mathbf{G P D}=\underline{\mathrm{MGD} \times(\mathrm{ppm} \text { or } \mathrm{mg} / \mathrm{L}) \times 8.34 \mathrm{lbs} / \mathrm{gal}}$
(\% purity) $\times \mathrm{lbs} / \mathrm{gal}$

GPD $=\quad$ MGD $\times(\mathrm{ppm}$ or $\mathrm{mg} / \mathrm{L}) \times 8.34 \mathrm{lbs} / \mathrm{gal}$
(commercial purity \%) x (ion purity $\%$ ) x ( $\mathrm{lbs} / \mathrm{gal}$ )
ppm or $\mathbf{m g} / \mathbf{l}=\underline{\mathrm{lbs} / \text { day }}$

$$
\text { MGD } \times 8.34 \mathrm{lbs} / \mathrm{gal}
$$



## Simple conversions - box 1

1. Convert 10 cubic feet of water into pounds of weight

## Simple conversions - box 1

1. Convert 10 cubic feet of water into pounds of weight
$10 \mathrm{cu} \mathrm{ft} \times 62.38 \mathrm{lbs} / \mathrm{cu} \mathrm{ft}=$

## Simple conversions - box 1

2. How many pounds does 15 gallons of water weigh?

## Simple conversions - box 1

2. How many pounds does 15 gallons of water weigh?

15 gal $\times 8.34 \mathrm{lb} / \mathrm{gal}=$

## Simple conversions - box 1

3. How many ppm are in $20 \mathrm{mg} / \mathrm{L}$ ?

## Simple conversions - box 1

3. How many ppm are in $20 \mathrm{mg} / \mathrm{L}$ ?

20 ppm = $20 \mathrm{mg} / \mathrm{L}$

## Simple conversions - box 1

4. How many square feet does a wall have if it measures 10 feet tall and 20 feet wide?

## Simple conversions - box 1

4. How many square feet does a wall have if it measures 10 feet tall and 20 feet wide?

$$
10 \mathrm{ft} \times 20 \mathrm{ft}=\mathrm{sq} \mathrm{ft} \text { or } \mathrm{ft} 2
$$

## Simple conversions - box 1

5. How many cubic feet of volume does a storage tank have if it measures 20 feet wide, 30 feet long and 10 feet deep?

## Simple conversions - box 1

5. How many cubic feet of volume does a storage tank have if it measures 20 feet wide, 30 feet long and 10 feet deep?

$$
20 \mathrm{ft} \times 30 \mathrm{ft} \times 10 \mathrm{ft}=\mathrm{cu} \mathrm{ft} \text { or ft3 }
$$

## Simple conversions - box 1

6. How many cubic yards (yd3) are removed from a trench that was 3 feet wide, 4 feet deep and 50 feet long?

## Simple conversions - box 1

6. How many cubic yards (yd3) are removed from a trench that was 3 feet wide, 4 feet deep and 50 feet long?

## $3 \mathrm{ft} \times 4 \mathrm{ft} \times 50 \mathrm{ft}=$ 27 cu ft/cu yd

## Simple conversions - box 1

7. How many feet are in 2 miles?

## Simple conversions - box 1

7. How many feet are in 2 miles?
$2 \mathrm{mi} \times 5280 \mathrm{ft} / \mathrm{mi}=$

## Simple conversions - box 1

8. How many gallons of water are in 3 acre feet of water?

## Simple conversions - box 1

8. How many gallons of water are in 3 acre feet of water?

3 ac $\mathrm{ft} \times 325,829 \mathrm{gal} / \mathrm{cu} \mathrm{ft}=$

## Simple conversions - box 1

9. How many gallons of water are in 25 cubic feet of volume?

## Simple conversions - box 1

9. How many gallons of water are in 25 cubic feet of volume?
$25 \mathrm{cu} \mathrm{ft} \times 7.48 \mathrm{gal} / \mathrm{cu} \mathrm{ft}=$

## Simple conversions - box 1

10. How many gallons are pumped each day if a pump is capable of pumping 50 gallons per minute and the pump runs for 9 hours a day?

## Simple conversions - box 1

10. How many gallons are pumped each day if a pump is capable of pumping 50 gallons per minute and the pump runs for 9 hours a day?
$50 \mathrm{gal} / \mathrm{min} \times 60 \mathrm{~min} / \mathrm{hr} \times 9 \mathrm{hr} / \mathrm{day}=$


Text your questions and comments anytime during the session

## CHLORINATION

Dosage, mg/l $=$ (Demand, $\mathrm{mg} / \mathrm{l})+($ Residual, $\mathrm{mg} / \mathrm{l})$
(Gas) lbs $=($ Vol, $M G) \times($ Dosage, mgl$) \times(8.34 \mathrm{lbs} / \mathrm{gal})$
HTH Solid (Ibs) =
(Vol, MG) $\times($ Dosage, $\mathrm{mg} / \mathrm{l}) \times(8.34 \mathrm{lbs} / \mathrm{gal})$
( \% Strength / 100 )
Liquid (gal) =
(Vol, MG) $\times($ Dosage, $\mathrm{mg} / \mathrm{l}) \times(8.34 \mathrm{lbs} / \mathrm{gal})$
( \% Strength /100) x Chemical Wt. (lbs/gal)

## What am I adding to the water to treat it?

-Chemicals

- Chlorine
- Gas
- Calcium hypochlorite

- Sodium hypochlorite


## Water Math Conversions Chemical/Chorine Dosage

In dosage problems, quantities of chemical are given in the following increments:

- Lbs or lbs/day
- Gallons (chemical solution quantity) or Gal/day
- mg/L or ppm
- MG or MGD

RCAC.org

## What does Miller Genuine Draft have to do with water treatment?

When working dosage, convert Q to MG or MGD!

How many MGD is $2,000,000 \mathrm{gal} /$ day?
A. 2 MGD
B. . 2 MGD
C. . 02 MGD

## What is not given in the question?

- THE CONVERSION NUMBER!
- 8.34 lbs/gal
- Chemical weight
- $8.34 \mathrm{lbs} /$ gal $X$ specific gravity


## Dosage

- Example: If a given water source had a chlorine demand of $3 \mathrm{mg} / \mathrm{L}$ and you wanted a chlorine residual of $.5 \mathrm{mg} / \mathrm{L}$ leaving the plant, what would your dose be?

Dosage, mg/l = (Demand, mg/l) + (Residual, $\mathrm{mg} / \mathrm{l}$ )

## Chlorination - box 2

1. If the chlorine dose added to drinking water equaled $10 \mathrm{mg} / \mathrm{L}$ and the chlorine demand was $9 \mathrm{mg} / \mathrm{L}$, what is the chlorine residual in ppm?

## Chlorination - box 2

1. If the chlorine dose added to drinking water equaled $10 \mathrm{mg} / \mathrm{L}$ and the chlorine demand was $9 \mathrm{mg} / \mathrm{L}$, what is the chlorine residual in ppm?
$10 \mathrm{mg} / \mathrm{L}-9 \mathrm{mg} / \mathrm{L}=1 \mathrm{mg} / \mathrm{L}$

## Chlorine Gas

- Chlorine gas is fed in lbs or lbs/day



## Chlorination - box 2

- Example: If a chlorine gas concentration of 15 ppm were added to a storage tank holding 2.5 MG, how many lbs of chlorine would be needed?
(Gas) lbs $=($ Vol, $M G) \times($ Dosage, mgl$) \times(8.34 \mathrm{lbs} / \mathrm{gal})$

Chlorination - box 2
2. If a storage tank had 1 MG of water and it needed to be dosed with $11 \mathrm{mg} / \mathrm{L}$ of gas chlorine, how many pounds of chlorine would this take?

## Chlorination - box 2

2. If a storage tank had 1 MG of water and it needed to be dosed with $11 \mathrm{mg} / \mathrm{L}$ of gas chlorine, how many pounds of chlorine would this take?
$1 \mathrm{MG} \times 8.34 \mathrm{lb} / \mathrm{gal} \times 11 \mathrm{mg} / \mathrm{L}=91.74 \mathrm{lb}$

## Chlorination - box 2

- Example: If a new storage tank measured 40 ft in diameter and were 30 ft tall, how many pounds of chlorine gas would be needed to dose this tank at $9 \mathrm{mg} / \mathrm{L}$ ?
(Gas) lbs=(Vol, MG) $\times$ (Dosage, mgl$) \times(8.34 \mathrm{lbs} / \mathrm{gal})$


## Chlorination - box 2

- Example: If a new storage tank measured 40 ft in diameter and were 30 ft tall, how many pounds of chlorine gas would be needed to dose this tank at $9 \mathrm{mg} / \mathrm{L}$ ?
$.785 \times 40 \mathrm{ft} \times 40 \mathrm{ft} \times 30 \mathrm{ft} \times 7.48 \mathrm{gal} / \mathrm{ft} 3=281,846$
(Gas) lbs=(Vol, MG) $\times$ (Dosage, mgl$) \times(8.34 \mathrm{lbs} / \mathrm{gal})$


## Chlorination - box 2

- Example: If a water pipe were 2 miles long and 8 inches in diameter, how many pounds of chlorine gas would have to be added for a dose of 6 ppm ?
$8 \div 12=.666 \mathrm{ft}$ and
$2 \times 5280 \mathrm{ft} / \mathrm{mi}=10,560 \mathrm{ft}$, so
$.785 \times .666 \times .666 \times 10,560 \times 7.48=27,503 \mathrm{gal}$
(Gas) lbs $=($ Vol, MG) $\times($ Dosage, mgl$) \times(8.34 \mathrm{lbs} / \mathrm{gal})$


Text your questions and comments anytime during the session

## Dosage, Calcium Hypochlorite page 1

- An operator may be given dry chemicals (usually chlorine) that is not $100 \%$ strength
- Consider this in the dosage problem
- Remember to convert the \% to a decimal (divide by 100)


## Percentages

- How would an operator enter the percentage $70 \%$ into the calculator?
A. 70
B. 7.0
C. . 70




## Chlorination - box 2

- Example: If a storage tank with 0.5 MG was treated with $65 \%$ calcium hypochlorite and the dose was 10 ppm , how many pounds of chemical would be needed?

HTH Solid (lbs) =
(Vol MG) $\times$ Dosage, $\mathrm{mg} / \mathrm{L}) \times(8.34 \mathrm{lbs} / \mathrm{gal})$
( \% Strength/100)

## Chlorination - box 2

3. If a 500,000 gallon storage tank was going to be dosed with 8 ppm of $65 \%$ HTH, how many pounds of HTH would this take?

## Chlorination - box 2

3. If a 500,000 gallon storage tank was going to be dosed with 8 ppm of $65 \%$ HTH, how many pounds of HTH would this take?
$.5 \mathrm{MG} \times 8 \mathrm{ppm} \times 8.34 \mathrm{lb} / \mathrm{gal}=51.31 \mathrm{lb}$ .65

## Chlorination - box 2

- Example: If a storage tank 50 feet in diameter \& 40 feet tall was treated with $70 \%$ calcium hypochlorite at a dose of 10 ppm , how many pounds of chemical would be needed?

HTH Solid (lbs) =
(Vol MG) x Dosage, mg/L) x (8.34lbs/gal)
( \% Strength/100)

## Chlorination - box 2

- Example: If a storage tank 50 feet in diameter \& 40 feet tall was treated with $70 \%$ calcium hypochlorite at a dose of 10 ppm , how many pounds of chemical would be needed?
$.785 \times 50 \mathrm{ft} \times 50 \mathrm{ft} \times 40 \mathrm{ft} \times 7.48 \mathrm{gal} / \mathrm{ft} 3=$
. $587 \mathrm{MG} \times 8.34 \mathrm{lbs} / \mathrm{gal} \times 10 \mathrm{ppm}=69.9 \mathrm{lbs}$
.70


## Chlorination - box 2

- Example: If 70\% available HTH chlorine were added to water at a concentration of 15 ppm in a daily flow of 2.5 MGD, how many lbs would be used daily?


## (Vol MG) x Dosage, mg/L) x (8.34lbs/gal) ( \% Strength/100)

## Questions?



Text your questions and comments anytime during the session

## Disinfection with bleach

- Liquid comes in; - Gallon containers - 55 gallon drums - Large totes, bulk
- Does not weigh the same as a gallon of water, but...

- Assume it does if they do not mention it!


## Percentages

- How would an operator enter the percentage $5.25 \%$ into the calculator?
5.25
.525
.0525
.00525
.05


## Chlorination - box 2

- Example: If 75 MG was treated with a $15 \%$ chlorine solution and a dose of 10 ppm was desired, how many gallons of solution would be required?

Liquid (gal) =
(Vol, MG) $\times$ (Dosage, $\mathrm{mg} / \mathrm{I}) \times(8.34 \mathrm{lbs} / \mathrm{gal})$
( \% Strength /100) x Chemical Wt. (lbs/gal)

## Chlorination - box 2

4. A water storage tank with 1.2 MG is going to be chlorinated using $15 \%$ liquid chlorine at a dose of 4 ppm. How many gallons of chlorine will this take?

## Chlorination - box 2

4. A water storage tank with 1.2 MG is going to be chlorinated using $15 \%$ liquid chlorine at a dose of 4 ppm . How many gallons of chlorine will this take?
1.2 MG $\times 4 \mathrm{ppm} \times 8.34 \mathrm{lb} / \mathrm{gal}=32 \mathrm{gal}$ $.15 \times 8.34 \mathrm{lb} / \mathrm{gal}$

## Chlorination - box 2

- Example: If 500,000 gallons was treated with a $5.25 \%$ chlorine solution weighing $9 \mathrm{lbs} / \mathrm{gal}$ and a dose of 10 ppm was desired, how many gallons of solution would be required?

Liquid (gal) =
(Vol, MG) x (Dosage, mg/l) x ( $8.34 \mathrm{lbs} / \mathrm{gal}$ )
( \% Strength /100) x Chemical Wt. (Ibs/gal)

## Chlorination - box 2

- Example: If 500,000 gallons was treated with a $5.25 \%$ chlorine solution weighing $9 \mathrm{lbs} / \mathrm{gal}$ and a dose of 10 ppm was desired, how many gallons of solution would be required?
$.5 \mathrm{MG} \times 8.34 \mathrm{lbs} / \mathrm{gal} \times 10 \mathrm{ppm}=88 \mathrm{gal}$ $.0525 \times 9 \mathrm{lbs} / \mathrm{gal}$


## Chlorination - box 2

- Example: If 600,000 gallons was treated with a $12.5 \%$ chlorine solution with a specific gravity of 1.2 and a dose of 11 ppm was desired, how many gallons of solution would be required?
. 6 MG x $8.34 \mathrm{lbs} / \mathrm{gal} \times 11 \mathrm{ppm}=44 \mathrm{gal}$ $.125 \times(8.34 \mathrm{lbs} / \mathrm{gal} \times 1.2)$


Text your questions and comments anytime during the session

## Chemical Dosage Calculations Part 1

Note (\% purity) and (\% commercial purity) used in decimal form

Lbs/day gas feed dry = MGD x $8.34 \mathrm{lbs} / \mathrm{gal} \times(\mathrm{ppm} / \mathrm{mg} / \mathrm{L})$

$$
\begin{aligned}
& \text { Lbs/day }=\frac{\text { MGD } \times 8.34 \mathrm{lbs} / \mathrm{gal} \times(\mathrm{ppm} \text { or } \mathrm{mg} / \mathrm{l})}{\% \text { purity }} \\
& \text { GPD }=\frac{(\mathrm{MGD}) \times(8.34 \mathrm{lbs} / \mathrm{gal}) \times \quad(\mathrm{ppm} \text { or } \mathrm{mg} / \mathrm{l})}{(\% \text { purity }) \times \mathrm{lbs} / \mathrm{gal}}
\end{aligned}
$$

## Dosage -box 13

- Example: If 70\% available HTH chlorine were added to water at a concentration of 15 ppm in a daily flow of 2.5 MGD, how many lbs would be used daily?

$$
\text { Lbs/day }=\frac{\text { MGD } \times 8.34 \mathrm{lbs} / \text { gal } \times(\mathrm{ppm} \text { or } \mathrm{mg} / \mathrm{l})}{\% \text { purity }}
$$

## Dosage - box 13

- Example: If $65 \%$ available calcium hypochlorite were added to water at a concentration of 9 $\mathrm{mg} / \mathrm{L}$ in a flow of 750,000 gal/day, how many lbs would be used daily?

$$
\text { Lbs/day }=\frac{\text { MGD } \times 8.34 \mathrm{lbs} / \mathrm{gal} \times(\mathrm{ppm} \text { or } \mathrm{mg} / \mathrm{l})}{\% \text { purity }}
$$

## Dosage formula for pounds removal!

- Example: If a raw water source has an iron concentration of 50 ppm and the daily flow is 1.2 MGD, how many pounds per day are removed if the filters remove 70\% of the iron in the raw water?


## Pounds solids removed= <br> (Vol, MG) $\times($ Dosage, $\mathrm{mg} / \mathrm{I}) \times(8.34 \mathrm{lbs} / \mathrm{gal}) \times(\%$ removed $)$

## Disinfection with bleach

- Liquid comes in;
- Gallon containers
- 55 gallon drums
- Large totes
- Bulk
- Does not weigh the same as a gallon of water

- Assume it does if they do not mention it!


## Dosage - box 13

- Example: If $15 \%$ chlorine bleach were added to your water at a concentration of 15 ppm , and your daily flow was 2.5 MGD , how many gallons would be needed daily?

$$
\text { GPD }=\frac{(\text { MGD }) \times(8.34 \mathrm{lbs} / \mathrm{gal}) \times(\mathrm{ppm} \text { or } \mathrm{mg} / \mathrm{l})}{(\% \text { purity }) \times \mathrm{lbs} / \mathrm{gal}}
$$

## Dosage - box 13

- Example: If $12.5 \%$ chlorine bleach were added to a flow of $850,000 \mathrm{gal} / \mathrm{day}$ at a concentration of 6 ppm , and the product weight $10 \mathrm{lbs} / \mathrm{gal}$, how many gallons would be needed daily?

$$
\text { GPD }=\frac{(\text { MGD }) \times(8.34 \mathrm{lbs} / \mathrm{gal}) \times(\mathrm{ppm} \text { or } \mathrm{mg} / \mathrm{l})}{(\% \text { purity }) \times \mathrm{lbs} / \mathrm{gal}}
$$

## Dosage - box 13

- Example: If $75 \mathrm{gal} /$ day of $15 \%$ chlorine bleach were added to a flow of 950,000 gal/day, and the product weight $10 \mathrm{lbs} / \mathrm{gal}$, what is the dosage rate in $\mathrm{mg} / \mathrm{L}$ ?

$$
\text { Ppm }=\frac{\text { gallons } \times \% \text { purity } \times \mathrm{lbs} / \mathrm{gal}}{\mathrm{MG} \times 8.34 \mathrm{lbs} / \mathrm{gal}}
$$

## Dosage - box 13

- Example: If $23 \%$ coagulant were added to a flow of 650,000 gal/day at a concentration of 6 ppm, and the product was $40 \%$ pure with a commercial purity of $55 \%$, how many gallons would be needed daily?

$$
\begin{aligned}
\text { GPD } & =(\text { MGD }) \times(8.34 \mathrm{lbs} / \mathrm{gal}) \times(\mathrm{ppm} \text { or } \mathrm{mg} / \mathrm{l}) \\
& (\% \text { purity }) \times(\% \text { com. Purity }) \times 8.34 \mathrm{lbs} / \mathrm{gal}
\end{aligned}
$$



Text your questions and comments anytime during the session

## This chlorine product is 2.5

 times heavier than air.A. Bleach
B. Powder chlorine
C. Gas chlorine
D. None of the above

What temperature does a fusible plug melt in a chlorine cylinder?
A. 158 degrees
B. 165 degrees
C. A and B
D. 175 degrees

## What does SCBA stand for?

A. Supervisory Control and Data Acquisition
B. Self contained Breathing Appearance
C. Self contained Breathing Apparatus
D. Self contained Broccoli apparatus

Repair kits for one ton chlorine containers are referred to as:
A. A kit
B. B kit
C. C kit
D. B and C

## What is the maximum feed rate for a 150 pound cylinder?

A. $450 \mathrm{lbs} / \mathrm{day}$
B. 40-42 lbs/day
C. $100 \mathrm{lbs} / \mathrm{day}$
D. $90 \mathrm{lbs} /$ day

## Detention Time - box 11

- Detention time refers to the time that it takes a volume of water to move through a process or vessel
- This time can be determined by dividing the vessel volume (in gallons) and time per day by the flow



## Factors Affecting Sedimentation

$\bullet$ Dissolved substances

- Flocculation characteristics
- Environmental (wind etc)
-Basin hydraulics



## Circular Sed Basin Example



## SEDIMENTATION

Surface Loading Rate, (GPD/ sq. ft.) $=($ Total Flow, GPD )
( Surface Area, sq.ft.)

Detention Time = Volume
flow

Detention Time hours = volume (cu ft) $\times 7.48 \mathrm{gal} / \mathrm{cu} \mathrm{ft} \times 24 \mathrm{hr} / \mathrm{day}$ Gal/day

Flow Rate = Volume Time

Weir Overflow Rate, GPD/L.F. = (Flow, GPD)
( Weir length, ft. )

## Detention Time - box 11

- Example: What is the detention time in hours for a flow of $2,200,000 \mathrm{gal} /$ day through a tank that measures 50 ft long, 40 ft wide and 30 ft tall?

DT hours $=$ volume (cu ft) $\times 7.48 \mathrm{gal} / \mathrm{cu} \mathrm{ft} \times 24 \mathrm{hr} / \mathrm{day}$ Gal/day

## Detention Time - box 11

- Example: What is the detention time in hours for a flow of 2,900,000 gal/day through a tank that measures 50 ft in diameter by 60 feet tall?

DT hours $=$ volume (cu ft) $\times 7.48$ gal/cu ft $\times 24$ hr/day Gal/day

## Detention Time - box 11

- Example: If 300,000 gal/day flows through a sedimentation basin that measures 60 ft in diameter and 20 ft tall, what is the detention time in days?


## $\mathrm{ft} \mathrm{xf} \times \quad \times 20 \times 7.48 \mathrm{gal} / \mathrm{ft}_{3} \times 1$ day gal/day

## Detention Time - box 11

- Example: How many minutes would it take a drop of water to pass though a contact basin 20 ft in diameter, 10 ft tall if the flow were $800,000 \mathrm{gal} /$ day?
$\mathrm{ft} \mathrm{x} \quad \mathrm{ft} \times \quad \mathrm{x} \quad \mathrm{ft} \times 7.48 \mathrm{gal} / \mathrm{ft} 3 \times 1440 \mathrm{~min} /$ day 800,000 gal/day


## What is the main operational problem with sedimentation basins?

A. Short circuiting
B. Density currents
C. Wind
D. All of the above

## Questions?



Text your questions and comments anytime during the session


## Velocity

Water traveling through a pipe will need to be converted into cu ft/sec and divided by the square footage (area) of the pipe $Q \div A=V$

OR

## Flow, velocity, area

$Q=A \times V \quad$ Quantity $=$ Area $\times$ Velocity
Flow ( $\mathrm{ft}^{3} / \mathrm{sec}$ ) $=$ Area $\left(\mathrm{ft}^{2}\right) \times$ Velocity ( $\mathrm{ft} / \mathrm{sec}$ )

$$
\frac{\text { MGD } \times 1.55 \mathrm{cuf} / \mathrm{sec} / \mathrm{MGD}}{.785 \times \text { pipe diameterft } \times \text { pipe diameterft }}=\frac{\mathrm{cuft} / \mathrm{sec}}{\mathrm{sq} \mathrm{ft}}=\mathrm{f} / \mathrm{sec}
$$

## Velocity - box 7

- Example: If a flow of 1,200,000 gpd were flowing through a 18 inch pipe, what is the velocity in ft/sec?

MGD $\times 1.55 \mathrm{cu} \mathrm{ft} / \mathrm{sec} / \mathrm{MGD}=\quad \mathrm{cu} \mathrm{ft} / \mathrm{sec}=\mathrm{ft} / \mathrm{sec}$ $.785 \times$ pipe diam $\mathrm{ft} \times$ pipe diam $\mathrm{ft}=\mathrm{sq} \mathrm{ft}$

## Velocity - box 7

Example: If the water through a 18 inch pipe were traveling at $3.5 \mathrm{ft} / \mathrm{sec}$, how many MGD is flowing through this pipe?

MGD $\times 1.55 \mathrm{cu} \mathrm{ft} / \mathrm{sec} / \mathrm{MGD}=\quad \mathrm{cu} \mathrm{ft} / \mathrm{sec}=\mathrm{ft} / \mathrm{sec}$ $.785 \times$ pipe diam ft $\times$ pipe diam $\mathrm{ft}=\mathrm{sq} \mathrm{ft}$

## Why the @\#\$\% should I care about velocity in a water pipe?

A. Because the state says so
B. Ensures system longevity
C. Can prevent corrosion issues
D. All of the above

## Questions?



RAISE YOUR HAND
OR SEND A TEXT MESSAGE

Filtration Rates

- The surface area of filtration media is where most material is removed




## Filtration Rates

- Filtration rates are determined by dividing the flow (usually in gpm) by the square footage of the filter media material
- Gpm/sq ft



## FILTRATION (number 1)

Filtration Rate (GPM/sq.ft) $=$ Filter Production (gallons per day) (Filter area sq. ft.) x ( $1,440 \mathrm{~min} /$ day $)$

Loading Rate (GPM/ sq. ft.) $=$ (Flow Rate, GPM )
( Filter Area, sq. ft. )

Daily Filter Production (GPD) =
(Filter Area, sq. ft. ) x (GPM/ sq. ft. x 1,440 min/day)

Backwash Pumping Rate (GPM) =
(Filter Area, sq. ft.) x (Backwash Rate, GPM/ sq. ft.)

## FILTRATION (number two)

## Backwash Volume (Gallons) =

(Filter Area, sq. ft. ) x (Backwash Rate, gpm/ sq. ft. ) x (Time, min).

Backwash Rate, GPM/ sq. ft. $=$ (Backwash Volume, gallons) ( Filter Area, sq. ft.) x (Time, min)

Rate of Rise (inches per min.) = (backwash rate gpm/sq.ft.) $\times 12$ inches $/ \mathrm{ft}$ $7.48 \mathrm{gal} / \mathrm{cu} . \mathrm{ft}$.

Unit Filter Run Volume, (UFRV) = (gallons produced in a filter run) (filter area sq. ft.)

## Area in Filtration Units - Problem and Set Up

- Example: How many square feet of surface area are there in two filter units that measure 20 feet wide and 40 feet long?
- Set up:
$\ldots \mathrm{ft} \mathrm{x}_{\ldots} \mathrm{ft} x \ldots=\quad \mathrm{sq} \mathrm{ft}$
$\qquad$


## Filtration Rates

- Example: What is the filtration rate in gpm/sq ft if a flow of 1,000,000 gal/day flows through a filter measuring 20 ft by 25 ft ?
- Set up:

$\mathrm{Gpm} \div \mathrm{sq} \mathrm{ft}=\mathrm{gpm} / \mathrm{sq} \mathrm{ft}$


## Filtration Rate Flow

- Example: When the flow to a filter is shut off and the water drops 20 inches in 9 minutes, how fast is the water dropping in feet per minute?
- Set up: $\mathrm{in} \div 12 \mathrm{in} / \mathrm{ft}=\mathrm{ft}$
$\mathrm{ft} \div 9 \mathrm{~min}=\mathrm{ft} / \mathrm{min}$


## Filtration Rate Flow

- Example: What is the flow through a filter in $\mathrm{cu} \mathrm{ft} / \mathrm{min}$ if the water drops .18 ft per minute and the filter is 25 ft wide and 30 ft long?
- Set up:
$\mathrm{ft} \mathrm{x} \quad \ldots \quad \mathrm{ft} \mathrm{x} \quad$ _ft $/ \mathrm{min}=\quad \mathrm{cuft} / \mathrm{min}$


## Filtration Rate Flow

- Example: What is the flow through a rapid sand filter in gpm if flow $=135 \mathrm{cu} \mathrm{ft} / \mathrm{min}$ ?
- Set up:
$\ldots \quad$ _cu ft/min $\times 7.48 \mathrm{gal} / \mathrm{cu} \mathrm{ft}=\mathrm{gpm}$


## Backwash rates

- Example: What is the backwash flow required in gpm to backwash a 25 ft wide by 30 ft long filter if a backwash flow of 20 $\mathrm{gpm} / \mathrm{sq} \mathrm{ft}$ is required?
- Set up:
__ftx__ft $=\quad \mathrm{sqft}$
$\mathrm{sq} \mathrm{ft} \times \ldots \mathrm{gpm} / \mathrm{sq} \mathrm{ft}=\quad \mathrm{gpm}$


## Questions?



Text your questions and comments anytime during the session

## Thank You For Attending!

We look forward to seeing you in future online classes!
mboyd@rcac.org
jhamner@rcac.org


