

Water Board Basics: Disinfection

RCAC 2015 Online Training Series

WELCOME!

This training is presented by RCAC with funding provided by the California State Water Resources Control Board Division of Drinking Water (DDW)

Your Moderators Today...

Kevin Baughman Reno, NV

kbaughman@rcac.org

The Rural Community Assistance Partnership

RCAC Programs

- Affordable housing
- Community facilities
- Water and wastewater infrastructure financing (Loan Fund)
- Classroom and online training
- On-site technical assistance
- Median Household Income (MHI) surveys

Control Tabs

Audio _ Controls

Attendee List

Today's Materials

Hide/Restore Control / Panel

Marking Tool

Questions?

Text your questions and comments anytime during the session

Performance Assessment Rating Tool (PART)

- 4 to 6 weeks from today
- Email w/ today's workshop in subject line
- 3 questions 3 minutes maximum
- How did you use the information that was presented today?
- Funders are looking for positive changes
- Help us continue these free workshops!

Your Presenter Today...

Michael Boyd Gering, NE

mboyd@rcac.org

Water Board Basics: Disinfection

RCAC 2015 Online Training Series

Sacramento, CA

POLL QUESTION #1

Training Objectives

- Review properties of chlorine
- Factors influencing disinfection
- Disinfection process
- Points of application
- Standard Disinfection Methods
- Determining chlorine dose

WHAT IS DISINFECTION?

- Disinfection The act of destroying pathogenic organisms (inactivation)
 - Kill or inactivate pathogens
 - Disrupt metabolism
 - Prevent from reproducing

WHY DISINFECT?

- Between 1971 and 2000
 - 363 outbreaks of Acute Gastroenteritis
 - 126 outbreaks of Giardiasis
 - 28 outbreaks of Hepatitus A
 - 27 outbreaks of AGI, Norovirus
 - 15 outbreaks of Cryptosporidiosis
 - 11 outbreaks of AGI, E. Coli

Historical context for chlorination

TYPES OF DISINFECTION

- Heat not practical, too expensive. Used only in emergencies (boil orders). No residual
- Ultraviolet exposure to UV lamps
- Chemical Treatment
 - Most commonly used

ULTRAVIOLET

- Effective for inactivation of pathogens (i.e. cryptosporidium cysts) which are resistant to chlorine
- Does not form Disinfection By Products (DBPs)
- For more on LT2 and UV disinfection, go to <u>http://www.epa.gov/safewater/disinfection/l</u> <u>t2/compliance.html</u>

- Potassium permanganate (KMnO₄) –
 Turns water purple
- Usually initial chemical added
- Taste & odor control (in conjunction with activated carbon)
- Oxidizes Iron, Manganese, Hydrogen Sulfide
- Controls Trihalomethane (THM) formation

- Ozone a powerful oxidizing agent
 - Bluish gas/pungent odor
 - Excellent odor removal
 - Complicated production (on-site)
 - Expensive (energy consumption)
 - Harmful Disinfection Byproduct (DBP) formation if bromate is present

No residual

- Chlorine Dioxide green-yellow gas usually manufactured on-site
 - Excellent for certain taste & odor removal
 - Potential to form harmful Disinfection Byproducts (i.e. chlorite & chlorate)
 - USEPA recommends residual levels be lower than practical for most cases
 - 1 mg/L MCL in Stage 1 DBPR

- Chlorine Most widely used disinfectant for water treatment in United States
- Hypochlorous acid (HOCl) and Hypochlorite ion (OCl⁻) are the most effective residuals. They are derived from:
 - Chlorine, Cl₂
 - Calcium Hypochlorite, Ca(OCI)₂
 - Sodium Hypochlorite, NaOCl

POLL QUESTION #2

PRINCIPLES OF CHLORINATION

BREAKPOINT CHLORINATION The amount of chlorine needed to achieve free residual chlorine

When chlorine is added to distilled water a free chlorine residual is produced. Most drinking water is not pure and the chlorine added reacts with impurities in a process called breakpoint chlorination

BREAKPOINT CHLORINATION

BREAKPOINT CHLORINATION

Decrease of chlorine residual

BREAKPOINT CHLORINATION

 After breakpoint, an increase in Cl₂ dose will produce a proportionate amount of free chlorine residual

DOSAGE = DEMAND + RESIDUAL

- The dosage (amount of chlorine you add to water) is equal to the amount you've lost due to demand plus the amount of residual desired
 - Dosage = 5.5 mg/L
 - Demand = 5 mg/L
 - Desired residual = 0.5 mg/L

TYPES OF CHLORINE RESIDUAL

Free Chlorine

- Hypochlorous acid (HOCI)
- Hypochlorite ion (OCI-)
- Free chlorine = HOCl + OCl-
- Combined chlorine
 - Chloramines The products of the reaction with chlorine and ammonia

EFFECTS OF pH ON FREE CHLORINE

- The amount of Hypochlorous acid (HOCI) versus Hypochlorite ion (OCI) depends on pH
- HOCl is a more powerful disinfectant than OCl-, therefore:
- Lower pH levels = more HOCl = more effective disinfection.
- pH of 7.5 or less is most effective

TRIHALOMETHANES (THMs)

- A byproduct of chlorine disinfection
- Formed when chlorine is added to water containing naturally occurring organic compounds, primarily humic and fulvic acids
- Considered to be potential carcinogens (cancer causing).

COMBINED CHLORINE RESIDUAL

- Chloramines are also called combined residuals, composed of:
 - Tri-chloramine
 - Di-chloramine
 - Mono-chloramine
- Di- and tri-chloramines contribute to taste and odor in finished water.
- Mono-chloramines produce the least amount of taste and odor problems.

CHLORAMINES vs FREE CHLORINE, Ph

FIGURE 7-7 Effects of pH on free and combined chlorine residual

TOTAL CHLORINE

- The sum total of free chlorine plus combined chlorine.
- Free Chlorine + Combined Chlorine = Total Chlorine

USE OF FREE CHLORINE VERSUS CHLORAMINE

- Free chlorine
 - More powerful disinfectant
 - Does not persist as long as chloramines
 - Contributes to formation of tri-halomethanes (THMs)

USE OF FREE CHLORINE VERSUS CHLORAMINE

- Chloramines
 - Much weaker disinfectant than chlorine
 - Longer lasting residual than chlorine
 - Does not contribute to formation of trihalomethanes (THMs)
 - Dialysis patients?

FACTORS INFLUENCING CHLORINE DISINFECTION

- 1. Disinfectant concentration
- 2. Contact time
- 3. Temperature of water
- 4. pH of the water
- 5. Turbidity

NSF Certification

- www.nsf.org
- National Sanitation Foundation
- Ann Arbor Michigan
- Independent Testing Organization
- Founded in 1944
- Since 1990 NSF International
- The tell tale logo

POLL QUESTION #3

FORMS OF CHLORINE

- Liquified chlorine gas
 - 100 & 150lb cylinders
 - One ton containers
 - Tank car @ 55-90 tons

FORMS OF CHLORINE

Properties of chlorine gas

- yellowish green in color
- 2.5 times as dense as air
- has pungent odor
- one volume of liquid chlorine will expand to about 450 volumes of gas
- is highly irritating
- can kill within a few breaths

LIQUIFIED GAS

Courtesy of The Chlorine Institute

FIGURE 7-12 Chlorine ton container

LIQUIFIED GAS

Courtesy of US Filter/Wallace & Tiernan

FIGURE 7-19 Two-cylinder scale

LIQUIFIED GAS

- Liquified chlorine gas is most economical, it is also difficult & dangerous to handle
- May reduce the pH and alkalinity of water

HYPOCHLORITES

- Chlorine compounds that are available in either dry or liquid form.
 - React with water to produce free chlorine
 - Hypochlorite will lose strength over time, especially sodium hypochlorite.
 - Hypochlorites will raise the pH and alk.
 - Safer to handle than liquified gas

DRY- CALCIUM HYPOCHLORITE

- Granular or tablet form
- 65-70% available chlorine
- Must be thoroughly mixed with water to form a hypochlorite solution
- Solution fed via <u>hypochlorinator</u>
- Relatively more expensive than other forms of chlorine
- Can lead to scale formation

LIQUID — SODIUM HYPOCHLORITE

- Also referred to as liquid bleach
- Available in a range of strengths from 5% (household bleach) to 15% (industrial)
- Solution fed via <u>hypochlorinator</u>

POLL QUESTION #4

USING CHLORINE GAS

- 150 lb Cylinders
 - Should always be stored (chained) in an upright position
 - Move with hand truck
 - Store in well ventilated, protected areas
 - Keep protective hoods on whether full or empty

Courtesy of The Chlorine Institute

FIGURE 7-49 Schematic of a well-designed chlorine room

USING CHLORINE GAS

- Ton cylinders
 - Stored horizontally
 - Moved by mechanical means
 - Bowl shaped hood covers the valves
 - Can draw from bottom valve (liquid) or top valve (gas)

From Handbook of Chlorination and Alternative Disinfectants. 4th ed. by Geo. Clifford White, copyright © 1998. Reprinted by permission of John Wiley & Sons, Inc.

FIGURE 7-18 Chlorination feed equipment located in a separate room

FEEDING CHLORINE GAS

- The main component of the feed system are:
 - Weighing scale
 - Valves and piping
 - Chlorinator
 - Injector or diffuser

Weighing scale

- Chlorinator
 - Meters gas safely and accurately from the cylinder
 - Delivers a set dosage
 - Rate adjusted by setting rotameter

- Injector
 - Venturi device
 - Creates the vacuum needed to operate

- Maximum withdrawal rate for cylinders 40-42 lbs/day
- Maximum withdrawal rate for ton containers (gas valve) 450-460 lbs/day
- Maximum withdrawal rate for ton containers connected to an evaporator (liquid valve) 9,600 lbs/day

CONNECTING CYLINDERS AND TON CONTAINERS

- Always wear respirator when changing
- Never lift a cylinder by the hood
- Secure in upright position with chain
- Remove protective hood
- Remove brass outlet cap and any foreign matter in valve outlet
- Use a new lead washer and supplied cylinder wrench

TANK AND AUXILIARY VALVE

OPENING THE VALVE

- Place supplied wrench on stem
- Grasp valve firmly, and give wrench a sharp blow in a counterclockwise direction with palm
- Open valve and close immediately
- Check all joints and connections for leaks with ammonia
- If no leaks are found, open valve one complete turn
- Leave wrench on the valve for easy shutoff

CHLORINATION OPERATING PROBLEMS

- Chlorine leaks
- Stiff container valves
- Hypochlorinator problems
- Tastes and odors
- Sudden residual changes
- THM formation

CHLORINATION OPERATING PROBLEMS

- Leak prevention
 - New gasket each time cylinder is changed
 - Clean threads with wire brush
 - Replace supply line valves annually

HYPOCHLRINATOR PROBLEMS

- Clogged equipment scale (CaCO₃)
 buildup in the suction or discharge line, or at the injector
 - 5 % hydrochloric acid
- Broken diaphragms
 - Monitor for drops in outflow from pump

CHLORINATION OPERATING PROBLEMS

- Taste and odors
 - "Swimming pool" odor usually caused by too little chlorine
- Sudden residual changes
 - Possible cross connection
 - Increase residual immediately, then analyze and correct problem

CONTROL TESTS

- Bacteriological tests (Bac T)
 - Determines the effectiveness of disinfection
 - Indicator organisms must:
 - Always be present in contaminated water
 - Always be absent when fecal is absent
 - Survive longer in water than pathogens
 - Be easy to identify
 - Coliform bacteria are the "indicator organism"

POLL QUESTION #5

CHLORINE SAFETY

- Proper safety equipment
 - Self Contained Breathing Apparatus (SCBA)
 - Emergency repair kits
 - Adequate ventilation equipment

CHLORINE SAFETY

 Self Contained Breathing
 Apparatus
 (SCBA)

CHLORINE SAFETY

- Emergency repair kits
 - Kit A for 150 lb. cylinders
 - Kit B for ton containers

CHLORINE SAFETY

- Adequate ventilation equipment
 - Should be able to completely change the volume of air in the room every one to four minutes
- Chlorine detector
 - Early warning of small leaks, before they grow bigger

Courtesy of The Chlorine Institute

FIGURE 7-49 Schematic of a well-designed chlorine room

CHLORINE SAFETY PROCEDURES

- Storing/handling containers
- Connecting/disconnecting cylinders
- Emergency procedures if leaks threaten nearby residential areas
- First aid for persons exposed to chlorine
- North American Chlorine Emergency Plan - (800) 424-9300
- https://www.chlorineinstitute.org/emerg ency-preparedness/chlorep/index.cfm

ALTERNATIVE OXIDANT FEED SYSTEMS

- Ozone system consists of the following:
 - Air compression/drying unit or oxygen source
 - Ozone generator or ozonator
 - Contactor to introduce ozone into the water
 - Residual ozone destruction unit

ALTERNATIVE OXIDANT FEED SYSTEMS

- Chlorine dioxide system
 - Uses chlorine and sodium chlorite to generate ClO₂ onsite
 - Small applications add chlorine to water, then add chlorinated water to hydrochloric acid/sodium chlorite solution
 - Larger systems inject chlorine gas into a stream of chlorite solution

Safety; no matter what!

- Gas chlorine is very dangerous
- More accidents occur with liquid
- Always wear the proper PPE
- Never think you're invincible

Determining Chlorine Dose

Always do the math!

Liq. Gal. = MG x ppm dose x 8.34 lbs % Strength x Chemical Weight

Example Using Sodium Hypo.

A tank containing 250,000 gallons of water, needs to be hand dosed at 1 ppm, with 12.5% strength liquid chlorine. (chemical weight is 10 lbs) How many gallons are required?

Liq. Gal. = 0.25 MG x 1 ppm dose x 8.34 lbs0.125 x 10 lbs

Answer: 1.67 Gallons of Liquid 12.5 %

Same Scenario Using 65% HTH

HTH Lbs =
$$0.25 \text{ MG x 1 ppm dose x 8.34 lbs}$$

0.65

Answer: 3.2 Lbs 65% HTH

Questions?

Resources

- SWRCB Operator Certification Page <u>http://www.waterboards.ca.gov/drinking</u> <u>water/certlic/occupations/DWopcert.shtml</u>
- Water Board Web Site

http://www.waterboards.ca.gov/drinkingwater/programs/index.shtml

To contact the trainers...

kbaughman@rcac.org

mboyd@rcac.org

5 minute break

